素性测试|第三组(米勒-拉宾)

给定一个数字n,检查它是否为素数。我们已经介绍并讨论了用于素性测试的School和Fermat方法。 素性测试|第1组(介绍和学校方法) 素性检验|集2(费马法) 本文讨论了米勒-拉宾方法。这种方法是一种概率方法(如费马法),但通常优于费马法。

null

算法:

// It returns false if n is composite and returns true if n// is probably prime.  k is an input parameter that determines// accuracy level. Higher value of k indicates more accuracy.bool isPrime(int n, int k)1) Handle base cases for n < 32) If n is even, return false.3) Find an odd number d such that n-1 can be written as d*2r.    Note that since n is odd, (n-1) must be even and r must be    greater than 0.4) Do following k times     if (millerTest(n, d) == false)          return false5) Return true.// This function is called for all k trials. It returns // false if n is composite and returns true if n is probably// prime.  // d is an odd number such that d*2r = n-1 for some r>=1bool millerTest(int n, int d)1) Pick a random number 'a' in range [2, n-2]2) Compute: x = pow(a, d) % n3) If x == 1 or x == n-1, return true.// Below loop mainly runs 'r-1' times.4) Do following while d doesn't become n-1.     a) x = (x*x) % n.     b) If (x == 1) return false.     c) If (x == n-1) return true. 

例子:

Input: n = 13,  k = 2.1) Compute d and r such that d*2r = n-1,      d = 3, r = 2. 2) Call millerTest k times.1st Iteration:1) Pick a random number 'a' in range [2, n-2]      Suppose a = 42) Compute: x = pow(a, d) % n     x = 43 % 13 = 123) Since x = (n-1), return true.IInd Iteration:1) Pick a random number 'a' in range [2, n-2]      Suppose a = 52) Compute: x = pow(a, d) % n     x = 53 % 13 = 83) x neither 1 nor 12.4) Do following (r-1) = 1 times   a) x = (x * x) % 13 = (8 * 8) % 13 = 12   b) Since x = (n-1), return true.Since both iterations return true, we return true. 

实施: 下面是上述算法的实现。

C++

// C++ program Miller-Rabin primality test
#include <bits/stdc++.h>
using namespace std;
// Utility function to do modular exponentiation.
// It returns (x^y) % p
int power( int x, unsigned int y, int p)
{
int res = 1; // Initialize result
x = x % p; // Update x if it is more than or
// equal to p
while (y > 0)
{
// If y is odd, multiply x with result
if (y & 1)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
// This function is called for all k trials. It returns
// false if n is composite and returns true if n is
// probably prime.
// d is an odd number such that  d*2<sup>r</sup> = n-1
// for some r >= 1
bool miillerTest( int d, int n)
{
// Pick a random number in [2..n-2]
// Corner cases make sure that n > 4
int a = 2 + rand () % (n - 4);
// Compute a^d % n
int x = power(a, d, n);
if (x == 1  || x == n-1)
return true ;
// Keep squaring x while one of the following doesn't
// happen
// (i)   d does not reach n-1
// (ii)  (x^2) % n is not 1
// (iii) (x^2) % n is not n-1
while (d != n-1)
{
x = (x * x) % n;
d *= 2;
if (x == 1) return false ;
if (x == n-1) return true ;
}
// Return composite
return false ;
}
// It returns false if n is composite and returns true if n
// is probably prime.  k is an input parameter that determines
// accuracy level. Higher value of k indicates more accuracy.
bool isPrime( int n, int k)
{
// Corner cases
if (n <= 1 || n == 4) return false ;
if (n <= 3) return true ;
// Find r such that n = 2^d * r + 1 for some r >= 1
int d = n - 1;
while (d % 2 == 0)
d /= 2;
// Iterate given nber of 'k' times
for ( int i = 0; i < k; i++)
if (!miillerTest(d, n))
return false ;
return true ;
}
// Driver program
int main()
{
int k = 4; // Number of iterations
cout << "All primes smaller than 100: " ;
for ( int n = 1; n < 100; n++)
if (isPrime(n, k))
cout << n << " " ;
return 0;
}


JAVA

// Java program Miller-Rabin primality test
import java.io.*;
import java.math.*;
class GFG {
// Utility function to do modular
// exponentiation. It returns (x^y) % p
static int power( int x, int y, int p) {
int res = 1 ; // Initialize result
//Update x if it is more than or
// equal to p
x = x % p;
while (y > 0 ) {
// If y is odd, multiply x with result
if ((y & 1 ) == 1 )
res = (res * x) % p;
// y must be even now
y = y >> 1 ; // y = y/2
x = (x * x) % p;
}
return res;
}
// This function is called for all k trials.
// It returns false if n is composite and
// returns false if n is probably prime.
// d is an odd number such that d*2<sup>r</sup>
// = n-1 for some r >= 1
static boolean miillerTest( int d, int n) {
// Pick a random number in [2..n-2]
// Corner cases make sure that n > 4
int a = 2 + ( int )(Math.random() % (n - 4 ));
// Compute a^d % n
int x = power(a, d, n);
if (x == 1 || x == n - 1 )
return true ;
// Keep squaring x while one of the
// following doesn't happen
// (i) d does not reach n-1
// (ii) (x^2) % n is not 1
// (iii) (x^2) % n is not n-1
while (d != n - 1 ) {
x = (x * x) % n;
d *= 2 ;
if (x == 1 )
return false ;
if (x == n - 1 )
return true ;
}
// Return composite
return false ;
}
// It returns false if n is composite
// and returns true if n is probably
// prime. k is an input parameter that
// determines accuracy level. Higher
// value of k indicates more accuracy.
static boolean isPrime( int n, int k) {
// Corner cases
if (n <= 1 || n == 4 )
return false ;
if (n <= 3 )
return true ;
// Find r such that n = 2^d * r + 1
// for some r >= 1
int d = n - 1 ;
while (d % 2 == 0 )
d /= 2 ;
// Iterate given nber of 'k' times
for ( int i = 0 ; i < k; i++)
if (!miillerTest(d, n))
return false ;
return true ;
}
// Driver program
public static void main(String args[]) {
int k = 4 ; // Number of iterations
System.out.println( "All primes smaller "
+ "than 100: " );
for ( int n = 1 ; n < 100 ; n++)
if (isPrime(n, k))
System.out.print(n + " " );
}
}
/* This code is contributed by Nikita Tiwari.*/


Python3

# Python3 program Miller-Rabin primality test
import random
# Utility function to do
# modular exponentiation.
# It returns (x^y) % p
def power(x, y, p):
# Initialize result
res = 1 ;
# Update x if it is more than or
# equal to p
x = x % p;
while (y > 0 ):
# If y is odd, multiply
# x with result
if (y & 1 ):
res = (res * x) % p;
# y must be even now
y = y>> 1 ; # y = y/2
x = (x * x) % p;
return res;
# This function is called
# for all k trials. It returns
# false if n is composite and
# returns false if n is
# probably prime. d is an odd
# number such that d*2<sup>r</sup> = n-1
# for some r >= 1
def miillerTest(d, n):
# Pick a random number in [2..n-2]
# Corner cases make sure that n > 4
a = 2 + random.randint( 1 , n - 4 );
# Compute a^d % n
x = power(a, d, n);
if (x = = 1 or x = = n - 1 ):
return True ;
# Keep squaring x while one
# of the following doesn't
# happen
# (i) d does not reach n-1
# (ii) (x^2) % n is not 1
# (iii) (x^2) % n is not n-1
while (d ! = n - 1 ):
x = (x * x) % n;
d * = 2 ;
if (x = = 1 ):
return False ;
if (x = = n - 1 ):
return True ;
# Return composite
return False ;
# It returns false if n is
# composite and returns true if n
# is probably prime. k is an
# input parameter that determines
# accuracy level. Higher value of
# k indicates more accuracy.
def isPrime( n, k):
# Corner cases
if (n < = 1 or n = = 4 ):
return False ;
if (n < = 3 ):
return True ;
# Find r such that n =
# 2^d * r + 1 for some r >= 1
d = n - 1 ;
while (d % 2 = = 0 ):
d / / = 2 ;
# Iterate given nber of 'k' times
for i in range (k):
if (miillerTest(d, n) = = False ):
return False ;
return True ;
# Driver Code
# Number of iterations
k = 4 ;
print ( "All primes smaller than 100: " );
for n in range ( 1 , 100 ):
if (isPrime(n, k)):
print (n , end = " " );
# This code is contributed by mits


C#

// C# program Miller-Rabin primality test
using System;
class GFG
{
// Utility function to do modular
// exponentiation. It returns (x^y) % p
static int power( int x, int y, int p)
{
int res = 1; // Initialize result
// Update x if it is more than
// or equal to p
x = x % p;
while (y > 0)
{
// If y is odd, multiply x with result
if ((y & 1) == 1)
res = (res * x) % p;
// y must be even now
y = y >> 1; // y = y/2
x = (x * x) % p;
}
return res;
}
// This function is called for all k trials.
// It returns false if n is composite and
// returns false if n is probably prime.
// d is an odd number such that d*2<sup>r</sup>
// = n-1 for some r >= 1
static bool miillerTest( int d, int n)
{
// Pick a random number in [2..n-2]
// Corner cases make sure that n > 4
Random r = new Random();
int a = 2 + ( int )(r.Next() % (n - 4));
// Compute a^d % n
int x = power(a, d, n);
if (x == 1 || x == n - 1)
return true ;
// Keep squaring x while one of the
// following doesn't happen
// (i) d does not reach n-1
// (ii) (x^2) % n is not 1
// (iii) (x^2) % n is not n-1
while (d != n - 1)
{
x = (x * x) % n;
d *= 2;
if (x == 1)
return false ;
if (x == n - 1)
return true ;
}
// Return composite
return false ;
}
// It returns false if n is composite
// and returns true if n is probably
// prime. k is an input parameter that
// determines accuracy level. Higher
// value of k indicates more accuracy.
static bool isPrime( int n, int k)
{
// Corner cases
if (n <= 1 || n == 4)
return false ;
if (n <= 3)
return true ;
// Find r such that n = 2^d * r + 1
// for some r >= 1
int d = n - 1;
while (d % 2 == 0)
d /= 2;
// Iterate given nber of 'k' times
for ( int i = 0; i < k; i++)
if (miillerTest(d, n) == false )
return false ;
return true ;
}
// Driver Code
static void Main()
{
int k = 4; // Number of iterations
Console.WriteLine( "All primes smaller " +
"than 100: " );
for ( int n = 1; n < 100; n++)
if (isPrime(n, k))
Console.Write(n + " " );
}
}
// This code is contributed by mits


PHP

<?php
// PHP program Miller-Rabin primality test
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p
function power( $x , $y , $p )
{
// Initialize result
$res = 1;
// Update x if it is more than or
// equal to p
$x = $x % $p ;
while ( $y > 0)
{
// If y is odd, multiply
// x with result
if ( $y & 1)
$res = ( $res * $x ) % $p ;
// y must be even now
$y = $y >>1; // $y = $y/2
$x = ( $x * $x ) % $p ;
}
return $res ;
}
// This function is called
// for all k trials. It returns
// false if n is composite and
// returns false if n is
// probably prime. d is an odd
// number such that d*2<sup>r</sup> = n-1
// for some r >= 1
function miillerTest( $d , $n )
{
// Pick a random number in [2..n-2]
// Corner cases make sure that n > 4
$a = 2 + rand() % ( $n - 4);
// Compute a^d % n
$x = power( $a , $d , $n );
if ( $x == 1 || $x == $n -1)
return true;
// Keep squaring x while one
// of the following doesn't
// happen
// (i) d does not reach n-1
// (ii) (x^2) % n is not 1
// (iii) (x^2) % n is not n-1
while ( $d != $n -1)
{
$x = ( $x * $x ) % $n ;
$d *= 2;
if ( $x == 1) return false;
if ( $x == $n -1) return true;
}
// Return composite
return false;
}
// It returns false if n is
// composite and returns true if n
// is probably prime. k is an
// input parameter that determines
// accuracy level. Higher value of
// k indicates more accuracy.
function isPrime( $n , $k )
{
// Corner cases
if ( $n <= 1 || $n == 4) return false;
if ( $n <= 3) return true;
// Find r such that n =
// 2^d * r + 1 for some r >= 1
$d = $n - 1;
while ( $d % 2 == 0)
$d /= 2;
// Iterate given nber of 'k' times
for ( $i = 0; $i < $k ; $i ++)
if (!miillerTest( $d , $n ))
return false;
return true;
}
// Driver Code
// Number of iterations
$k = 4;
echo "All primes smaller than 100: " ;
for ( $n = 1; $n < 100; $n ++)
if (isPrime( $n , $k ))
echo $n , " " ;
// This code is contributed by ajit
?>


Javascript

<script>
// Javascript program Miller-Rabin primality test
// Utility function to do
// modular exponentiation.
// It returns (x^y) % p
function power(x, y, p)
{
// Initialize result
let res = 1;
// Update x if it is more than or
// equal to p
x = x % p;
while (y > 0)
{
// If y is odd, multiply
// x with result
if (y & 1)
res = (res*x) % p;
// y must be even now
y = y>>1; // y = y/2
x = (x*x) % p;
}
return res;
}
// This function is called
// for all k trials. It returns
// false if n is composite and
// returns false if n is
// probably prime. d is an odd
// number such that d*2<sup>r</sup> = n-1
// for some r >= 1
function miillerTest(d, n)
{
// Pick a random number in [2..n-2]
// Corner cases make sure that n > 4
let a = 2 + Math.floor(Math.random() * (n-2)) % (n - 4);
// Compute a^d % n
let x = power(a, d, n);
if (x == 1 || x == n-1)
return true ;
// Keep squaring x while one
// of the following doesn't
// happen
// (i) d does not reach n-1
// (ii) (x^2) % n is not 1
// (iii) (x^2) % n is not n-1
while (d != n-1)
{
x = (x * x) % n;
d *= 2;
if (x == 1)
return false ;
if (x == n-1)
return true ;
}
// Return composite
return false ;
}
// It returns false if n is
// composite and returns true if n
// is probably prime. k is an
// input parameter that determines
// accuracy level. Higher value of
// k indicates more accuracy.
function isPrime( n, k)
{
// Corner cases
if (n <= 1 || n == 4) return false ;
if (n <= 3) return true ;
// Find r such that n =
// 2^d * r + 1 for some r >= 1
let d = n - 1;
while (d % 2 == 0)
d /= 2;
// Iterate given nber of 'k' times
for (let i = 0; i < k; i++)
if (!miillerTest(d, n))
return false ;
return true ;
}
// Driver Code
// Number of iterations
let k = 4;
document.write( "All primes smaller than 100: <br>" );
for (let n = 1; n < 100; n++)
if (isPrime(n, k))
document.write(n , " " );
// This code is contributed by gfgking
</script>


输出:

All primes smaller than 100: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 

这是怎么回事? 以下是算法背后的一些重要事实:

  1. 费马定理 表示,如果n是素数,那么对于每个a,1<=a n-1 %n=1
  2. 基本情况确保n必须是奇数。因为n是奇数,所以n-1必须是偶数。偶数可以写成d*2 s 其中d为奇数,s>0。
  3. 根据以上两点,对于[2,n-2]范围内的每一个随机选取的数字 d*2r %n必须是1。
  4. 根据 欧几里得引理 ,如果x 2. %n=1或(x) 2. –1)%n=0或(x-1)(x+1)%n=0。然后,如果n是素数,则n除(x-1)或n除(x+1)。这意味着x%n=1或x%n=-1。
  5. 从第2点和第3点,我们可以得出结论
    For n to be prime, either    ad % n = 1          OR     ad*2i % n = -1     for some i, where 0 <= i <= r-1.

下一篇文章: 素性测试|集4(索洛维·斯特拉森)

这篇文章是有贡献的 鲁希尔·加格 。如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请发表评论

© 版权声明
THE END
喜欢就支持一下吧
点赞11 分享