凸包|集2(格雷厄姆扫描)

给定平面上的一组点。集合的凸包是包含其所有点的最小凸多边形。

null

图片[1]-凸包|集2(格雷厄姆扫描)-yiteyi-C++库

我们强烈建议先看下面的帖子。 如何检查两条给定线段是否相交? 我们讨论过 贾维斯算法 对于凸面外壳。Jarvis算法的最坏情况时间复杂度为O(n^2)。利用格雷厄姆扫描算法,我们可以在O(nLogn)时间内找到凸包。下面是格雷厄姆的算法 设点[0..n-1]为输入数组。 1) 通过比较所有点的y坐标找到最底部的点。如果有两个点具有相同的y值,则考虑具有较小x坐标值的点。让最低点为P0。将P0置于输出外壳的第一个位置。 2) 考虑其余的N-1点,并以极角为单位在点附近逆时针排序[0 ]。如果两点的极角相同,则先放置最近的点。 3. 排序后,检查两个或多个点是否具有相同的角度。如果两个以上的点具有相同的角度,则移除所有相同的角度点,但距离P0最远的点除外。让新数组的大小为m。 4) 如果m小于3,则返回(不可能出现凸包) 5) 创建一个空堆栈“S”,并将点[0]、点[1]和点[2]推送到S。 6) 逐个处理剩余的m-3点。对每一个“点[i]”进行以下操作 4.1) 继续从堆栈中移除点,同时 方向 以下三个点中有一个不是逆时针方向的(或者它们不左转)。 a) 堆栈中靠近顶部的点 b) 指向堆栈顶部 c) 要点[i] 4.2) 推送点[i]到S 5) 打印文件的内容 上述算法可分为两个阶段。 第一阶段(分拣点): 我们首先找到最底层的点。这样做的目的是对点进行预处理,根据最底层的点对点进行排序。一旦这些点被排序,它们就会形成一条简单的闭合路径(见下图)。

图片[2]-凸包|集2(格雷厄姆扫描)-yiteyi-C++库

排序标准应该是什么?由于三角函数不容易计算,实际角度的计算效率很低。其思想是使用方向来比较角度,而不实际计算角度(参见下面的compare()函数) 第2阶段(接受或拒绝分数): 一旦我们有了闭合的路径,下一步就是遍历该路径并移除该路径上的凹点。如何决定删除和保留哪一点?再一次 方向 这里有帮助。排序数组中的前两点始终是凸包的一部分。对于剩余的点,我们跟踪最近的三个点,并找到它们形成的角度。让这三个点分别为上一个(p)、当前(c)和下一个(n)。如果这些点的方向(以相同的顺序考虑)不是逆时针的,我们丢弃c,否则我们保留它。下图显示了该阶段的逐步过程。

图片[3]-凸包|集2(格雷厄姆扫描)-yiteyi-C++库

下面是C++实现上述算法。

CPP

// A C++ program to find convex hull of a set of points. Refer
// for explanation of orientation()
#include <iostream>
#include <stack>
#include <stdlib.h>
using namespace std;
struct Point
{
int x, y;
};
// A global point needed for  sorting points with reference
// to  the first point Used in compare function of qsort()
Point p0;
// A utility function to find next to top in a stack
Point nextToTop(stack<Point> &S)
{
Point p = S.top();
S.pop();
Point res = S.top();
S.push(p);
return res;
}
// A utility function to swap two points
void swap(Point &p1, Point &p2)
{
Point temp = p1;
p1 = p2;
p2 = temp;
}
// A utility function to return square of distance
// between p1 and p2
int distSq(Point p1, Point p2)
{
return (p1.x - p2.x)*(p1.x - p2.x) +
(p1.y - p2.y)*(p1.y - p2.y);
}
// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are collinear
// 1 --> Clockwise
// 2 --> Counterclockwise
int orientation(Point p, Point q, Point r)
{
int val = (q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y);
if (val == 0) return 0; // collinear
return (val > 0)? 1: 2; // clock or counterclock wise
}
// A function used by library function qsort() to sort an array of
// points with respect to the first point
int compare( const void *vp1, const void *vp2)
{
Point *p1 = (Point *)vp1;
Point *p2 = (Point *)vp2;
// Find orientation
int o = orientation(p0, *p1, *p2);
if (o == 0)
return (distSq(p0, *p2) >= distSq(p0, *p1))? -1 : 1;
return (o == 2)? -1: 1;
}
// Prints convex hull of a set of n points.
void convexHull(Point points[], int n)
{
// Find the bottommost point
int ymin = points[0].y, min = 0;
for ( int i = 1; i < n; i++)
{
int y = points[i].y;
// Pick the bottom-most or chose the left
// most point in case of tie
if ((y < ymin) || (ymin == y &&
points[i].x < points[min].x))
ymin = points[i].y, min = i;
}
// Place the bottom-most point at first position
swap(points[0], points[min]);
// Sort n-1 points with respect to the first point.
// A point p1 comes before p2 in sorted output if p2
// has larger polar angle (in counterclockwise
// direction) than p1
p0 = points[0];
qsort (&points[1], n-1, sizeof (Point), compare);
// If two or more points make same angle with p0,
// Remove all but the one that is farthest from p0
// Remember that, in above sorting, our criteria was
// to keep the farthest point at the end when more than
// one points have same angle.
int m = 1; // Initialize size of modified array
for ( int i=1; i<n; i++)
{
// Keep removing i while angle of i and i+1 is same
// with respect to p0
while (i < n-1 && orientation(p0, points[i],
points[i+1]) == 0)
i++;
points[m] = points[i];
m++; // Update size of modified array
}
// If modified array of points has less than 3 points,
// convex hull is not possible
if (m < 3) return ;
// Create an empty stack and push first three points
// to it.
stack<Point> S;
S.push(points[0]);
S.push(points[1]);
S.push(points[2]);
// Process remaining n-3 points
for ( int i = 3; i < m; i++)
{
// Keep removing top while the angle formed by
// points next-to-top, top, and points[i] makes
// a non-left turn
while (S.size()>1 && orientation(nextToTop(S), S.top(), points[i]) != 2)
S.pop();
S.push(points[i]);
}
// Now stack has the output points, print contents of stack
while (!S.empty())
{
Point p = S.top();
cout << "(" << p.x << ", " << p.y << ")" << endl;
S.pop();
}
}
// Driver program to test above functions
int main()
{
Point points[] = {{0, 3}, {1, 1}, {2, 2}, {4, 4},
{0, 0}, {1, 2}, {3, 1}, {3, 3}};
int n = sizeof (points)/ sizeof (points[0]);
convexHull(points, n);
return 0;
}


Python3

# A Python3 program to find convex hull of a set of points. Refer
# for explanation of orientation()
from functools import cmp_to_key
# A class used to store the x and y coordinates of points
class Point:
def __init__( self , x = None , y = None ):
self .x = x
self .y = y
# A global point needed for sorting points with reference
# to the first point
p0 = Point( 0 , 0 )
# A utility function to find next to top in a stack
def nextToTop(S):
return S[ - 2 ]
# A utility function to return square of distance
# between p1 and p2
def distSq(p1, p2):
return ((p1.x - p2.x) * (p1.x - p2.x) +
(p1.y - p2.y) * (p1.y - p2.y))
# To find orientation of ordered triplet (p, q, r).
# The function returns following values
# 0 --> p, q and r are collinear
# 1 --> Clockwise
# 2 --> Counterclockwise
def orientation(p, q, r):
val = ((q.y - p.y) * (r.x - q.x) -
(q.x - p.x) * (r.y - q.y))
if val = = 0 :
return 0 # collinear
elif val > 0 :
return 1 # clock wise
else :
return 2 # counterclock wise
# A function used by cmp_to_key function to sort an array of
# points with respect to the first point
def compare(p1, p2):
# Find orientation
o = orientation(p0, p1, p2)
if o = = 0 :
if distSq(p0, p2) > = distSq(p0, p1):
return - 1
else :
return 1
else :
if o = = 2 :
return - 1
else :
return 1
# Prints convex hull of a set of n points.
def convexHull(points, n):
# Find the bottommost point
ymin = points[ 0 ].y
min = 0
for i in range ( 1 , n):
y = points[i].y
# Pick the bottom-most or chose the left
# most point in case of tie
if ((y < ymin) or
(ymin = = y and points[i].x < points[ min ].x)):
ymin = points[i].y
min = i
# Place the bottom-most point at first position
points[ 0 ], points[ min ] = points[ min ], points[ 0 ]
# Sort n-1 points with respect to the first point.
# A point p1 comes before p2 in sorted output if p2
# has larger polar angle (in counterclockwise
# direction) than p1
p0 = points[ 0 ]
points = sorted (points, key = cmp_to_key(compare))
# If two or more points make same angle with p0,
# Remove all but the one that is farthest from p0
# Remember that, in above sorting, our criteria was
# to keep the farthest point at the end when more than
# one points have same angle.
m = 1 # Initialize size of modified array
for i in range ( 1 , n):
# Keep removing i while angle of i and i+1 is same
# with respect to p0
while ((i < n - 1 ) and
(orientation(p0, points[i], points[i + 1 ]) = = 0 )):
i + = 1
points[m] = points[i]
m + = 1 # Update size of modified array
# If modified array of points has less than 3 points,
# convex hull is not possible
if m < 3 :
return
# Create an empty stack and push first three points
# to it.
S = []
S.append(points[ 0 ])
S.append(points[ 1 ])
S.append(points[ 2 ])
# Process remaining n-3 points
for i in range ( 3 , m):
# Keep removing top while the angle formed by
# points next-to-top, top, and points[i] makes
# a non-left turn
while (( len (S) > 1 ) and
(orientation(nextToTop(S), S[ - 1 ], points[i]) ! = 2 )):
S.pop()
S.append(points[i])
# Now stack has the output points,
# print contents of stack
while S:
p = S[ - 1 ]
print ( "(" + str (p.x) + ", " + str (p.y) + ")" )
S.pop()
# Driver Code
input_points = [( 0 , 3 ), ( 1 , 1 ), ( 2 , 2 ), ( 4 , 4 ),
( 0 , 0 ), ( 1 , 2 ), ( 3 , 1 ), ( 3 , 3 )]
points = []
for point in input_points:
points.append(Point(point[ 0 ], point[ 1 ]))
n = len (points)
convexHull(points, n)
# This code is contributed by Kevin Joshi


输出:

(0, 3)(4, 4)(3, 1)(0, 0) 

时间复杂性: 设n为输入点数。如果使用O(nLogn)排序算法,该算法需要O(nLogn)时间。 第一步(找到最低点)需要O(n)个时间。第二步(排序点)需要O(nLogn)时间。第三步需要O(n)时间。在第三步中,每个元素最多一次被推和弹出。因此,假设堆栈操作需要O(1)个时间,那么逐个处理点的第六步需要O(n)个时间。总体复杂度为O(n)+O(nLogn)+O(n)+O(n),即O(nLogn)。

参考资料: 算法导论第三版由Clifford Stein、Thomas H.Cormen、Charles E.Leiserson、Ronald L.Rivest编写 http://www.dcs.gla.ac.uk/~pat/52233/slides/Hull1x1。pdf 如果您发现任何不正确的地方,或者您想分享有关上述主题的更多信息,请写下评论。

© 版权声明
THE END
喜欢就支持一下吧
点赞6 分享